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1. General objective

A Swiss company in the field of functionalized silica powder has hired you to determine the
power of the pump that will bring water at 25°C into a fluidized bed of silica particles
(spherical beads, 200 kg). In the bed, the beads undergo surface functionalization and must be
suspended, or fluidized, during processing to ensure total surface coverage. If functionalization
is not effective, surface impurities could compromise the polarity and separating power of the
product when used for chromatographic purposes. The company provided you with particle
samples but did not provide information on the characteristics of the particles. First you need
to characterize the particles, and then you need to characterize their fluidization properties to
be able to determine the size of the pump needed.

2. Theoretical basis.
2.1. Definition of the drag coefficient around submerged objects
2.1.1. Introduction and types of drag.

The flow of a fluid around a submerged body occurs in many chemical engineering and other
process applications. This takes place, for example, around particles in suspension, through a
drying or filtering membrane, through heat exchangers, etc. It is useful to be able to predict
friction losses and/or the force on immersed objects in these various applications.
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Figure 1: Flow of fluid around different submerged bodies

In the Figure 1 above (part a) the fluid flow is parallel to the smooth surface of the flat, solid
plate and the force F (in Newton) on a surface element dA [m?] of the plate is the shear stress
tw multiplied by dA, i.e. Tw dA. The total force is the sum of the integrals of these quantities
evaluated over the entire surface of the plate. Here the transfer of moment to the surface
produces a tangential stress or surface slip.



In many cases, however, the submerged body is a solid that has different angles to the direction
of fluid flow. As shown in Figure 1b the velocity vo is uniform as the fluid approaches the
suspended body in a large tube. The lines, called stream lines, represent the path of fluid
elements around the suspended body. The thin boundary layer adjacent to the solid surface is
represented by a dashed line and at the edge of this layer the velocity is substantially the same
as the velocity of the adjacent fluid. At the front center of the body, at a place called the
stagnation point, the velocity of the fluid is zero. The growth of the boundary layer starts from
this point and will continue over the entire surface of the object until it separates. Due to the
velocity gradient in the boundary layer a tangential stress is created. This is called friction
drag. Outside the boundary layer the direction of the fluid changes direction to pass around
the solid, it will be accelerated in front of the solid and slowed down afterwards. Due to these
effects, additional force is exerted by the fluid on the body. This phenomenon, called pressure
drag (or form drag), is in addition to the friction drag in the boundary layer.

As shown in Figure 1b, the boundary layer detachment occurs and a wake covering the entire
back of the object occurs when large vortices are present, contributing to pressure drag. The
separation point depends on the shape of the particle, the Reynolds number, and so on.

Pressure drag can be minimized by streamlining the body (Figure 1lc) to shift the layer
detachment to the back of the body, which greatly reduces the size of the wake.

2.1.2. Coefficient of drag.

From the previous discussion, it is evident that the geometry of the submerged solid is a major
factor in determining the amount of total drag force exerted on the body. Correlations based
on geometry and flow characteristics for solid objects suspended or retained in a flow
(submerged objects) are similar in concept to the correlation between friction factor and
Reynolds number given for flows in pipes. Through pipes, the coefficient of friction is defined
as the ratio between the tensile force per unit area (shear stress) and the product of velocity
and density as given in equation 1:

_ T _ AppnR* (pvz)_l
f= pv2/2  2mRAL 2 (eq- 1)

where:

/= Fanning friction factor

App = pressure loss due to drag
nR? = cross-sectional area
2nRAL = wetted surface

Similarly, for flow around submerged objects, the drag coefficient Cp is defined as the ratio
of the total drag force per unit area and pv3 /2 :
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cy =2 (225) (cq. 2)

where:

Fp = total force of drag [N]

Ap = area obtained by projecting the body on a plane perpendicular to the flow lines
[m?]

Cp = coefficient of drag [dimensionless]

vo = fluid approach speed [m/s]

p = density of the fluid [kg/m?]

By solving equation 2 for the total drag force, we get:

‘UZ
Fp =Cp fPAp (eq. 3)
The Reynolds number for a given solid immersed in a flowing liquid is:

Dyvgp D, G
Npe =225 = 22 (eq.4)

where Gy = vyp
2.2. Flow around a sphere, a long cylinder, or a disc

There is a relationship between Cp and Nre for each case of immersed object, determined
experimentally. These are shown in Figure 2 for spheres, long cylinders, and discs. In these
cases, the disc face and the cylinder axis are always considered perpendicular to the direction
of flow. However, in the laminar region, i.e., for low Reynolds numbers (less than about 1.0),
the drag force determined experimentally is the same as the Stokes' Law equation as follows:

Fp = 3nuD,v, (eq.5)
By combining equations 3 and 5 and solving for Cp, the Stokes' law drag coefficient is:
C 24 24 (eq. 6)

D bpvep/u T Ne
The variation of Cp with respect to Nre is quite complicated due to the interaction of factors
that control layer strength and pressure drag. For a sphere, when the Reynolds number is
increased beyond the range of Stokes' law, detachment of the boundary layer occurs. If Nre is
further increased, the separation point shifts and Cp decreases. In the region of Nr. of about 1
x 103 to 2 x 10°, the drag coefficient is approximately constant at Cp = 0,44 for a sphere. From
Nre = 3 x 10° there is a sudden drop of Cp which is the result of the complete turbulence in
the boundary layer and the displacement of the separation point downstream Above a Nre of
about 5 x 10° drag coefficients are again approximately constant: 0.13 for a sphere, 0.33 for a
cylinder and 1.12 for a disk.
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Figure 2: Correlations between the Reynolds number and the drag coefficient for spheres, disks, and cylinders

The flow of fluids in cylinders or tubes takes place in heat exchangers or other process
applications. The tube banks can be arranged in a number of different geometries. Due to the
many possible configurations, it is not possible to have a single correlation for pressure drops
and friction factors.

2.3.Flow through a fixed (stationary) bed
2.3.1. Introduction.

A system of considerable importance in the chemical industry and other areas of process
engineering is the packed bed or packed column which is used in fixed bed catalytic reactors,
solute adsorption or absorption, filter beds, etc. Bed filler particles can be spheres, irregular
particles, cylinders, or various types of commercial packing. In the discussion that follows, it
is assumed that the filling is uniform everywhere in the column or bed. The ratio of column
diameter to packing diameter should be a minimum of 8:1 to 10:1 to be able to neglect the
wall effects. In the theoretical approach used, the packed column is considered to be a bundle
of twisted tubes with a different cross-section. The theory developed for simple straight tubes
is used to develop the results for the bundle of twisted tubes.

2.3.2. Laminar flow in packed beds.
Some definitions are needed for the flow in a particle bed such as the porosity € in a packed

bed:

empty volume in the bed

(eq. 7)

" total volume of bed (void plus solid)

The specific surface area of a particle ay in [m™]:

Ay =7~ (Cq. 8)



where S, is the surface area of the particle in [m?] and V}, is the volume of the particle in [m?].
For a spherical particle:

ay = - (eq. 9)

Dp

where Dy, is the particle diameter in [m]. Since (1 - €) is the volume fraction of the particles in
the bed, we can write:

a=a,(1—¢) =Di(1—e) (eq.10)

where a is the ratio of the total area in the bed to the total volume of the bed (void volume as
well as the volume of particles) in [m™'].

The mean interstitial velocity of the fluid in the bed is v [m/s]. It is related to the superficial
velocity, v', based on the cross-section of the empty container by:

v'=¢gv (eq.11)

The hydraulic radius 7y is defined as the ratio between the cross-sectional area of the channel
(the path the fluid takes through the bed) and the wetted perimeter of the flow channel. Thus,
in the case of turbulent flow only:

(empty volume in bed)
_ (flow cross section) _ \ avajlable for flow

r volume empty/volume total £ (e 12)
H ™ (wetted perimeter) (total wetted surface) " surface area wetted/volume total @ g
of solids
By combining equations 10 and 12:
€
Ty = D eq.13

Since the equivalent diameter of a channel is D = 4ry, the Reynolds number for a packed bed
is as follows using equations 11 and 13:

_ (rpvp _ 4e vp 4 Dpv'p
NRe -

u - 6(1-¢) P ey - 6(1-¢) u

(eq.14)

For packed (stationary) beds, Ergiin defined the Reynolds number as above but without the
term 4/6.

Dpv'p _ DpG'
1-8u  @A-9u

Npep = (eq.15)

where G' = V' p.
For laminar flow, the Hagen-Poiseuille equation defines the pressure drop:



_ 32pv(Ly-Lq)

App = (P1=P2)f == (eq.16)
where:
p1 = pressure at point 1 [N/m?]
p2 = pressure at point 2 [N/m?]
v = average fluid velocity in the tube [m/s]
D = internal diameter [m]
(Lo—L1) = L; = length of the bed [m]
(p1—p2) = Apr = pressure drop due to friction
Combining this equation with the 13 for r4 and eq. 11, we find:

s2u(L "Li(1-€)?
Ap; = 32uvly _ 3200l (72)uv'Ly(1-8) (eq.17)

D2 (4ry)? 3D}

The actual distance travelled by the liquid in the bed is greater than L; due to the tortuous
trajectory of the liquid through the bed and the use of the hydraulic radius foresees a too big
velocity v. Experimental data show that the constant should be 150 instead of 72, giving the
Blake-Kozeny equation for laminar flow in a packed bed, with a void fraction less than 0.5,
an effective particle diameter D, and when Nge,p < 10

_150uv’L; (1-€)?

Aps = D = (eq.18)
2.3.3.  Turbulent flow in packed beds.
For a turbulent flow, we use the same procedure, starting with the equation below:
L 2
Apr=4fpos (eq.19)
And substituting in equations 11 and 13 we can get:
N2
Apy = %{))“1—3 (¢q.20)

For a very turbulent flow the coefficient of friction should approach a constant value (as it
does for the classic submerged objects shown in Figure 2). In addition, it is assumed that all
packed beds should have the same relative roughness (in the limiting case). Experimental data
indicate that 3f = 1.75. Therefore, the final equation for a turbulent flow for Nrep > 1000,
which is called the Burke-Plummer equation, becomes:

N2
Apy =1z ite (eq.21)

3
Dp £



Adding up equation 18 for laminar flow and equation 21 for turbulent flow, Ergiin proposed
the following general equation for low, intermediate, and high Reynolds numbers that was
experimentally tested:

2
_ 150uv'L; (1-¢)? n 1.75p(v") Ly 1-¢

bpp == — (eq22)
Rewriting equation 22 in terms of dimensionless groups gives:
3
Sprp Dp £ _ 150 4 475 (eq.23)

(GNH2% Ly 1-¢ NRep

This is called the Ergiin equation and can be used for liquids or for gases using the density p
of the gas at the arithmetic mean of the inlet and outlet pressure. The velocity v' changes in
the bed for a compressible fluid, but G' is constant. For high values of Nre,p equations 22 and
23 are reduced to equation 21 and are reduced to equation 18 for low values.

2.3.4. Form factors.

Many particles in packed beds are often irregularly shaped. The equivalent particle diameter
is defined as the diameter of a sphere having the same volume as the particle. The sphericity
factor (or form factor) ¢p5 of a particle is the ratio of the surface of this sphere having the same
volume as the particle to the effective surface of the particle. For a sphere, the surface S,, =
nD} and the volume is V, = D, /6. Therefore, for each particle, ¢s = mD}/S,, where S, is
the effective surface area of the particle and D, is the particle diameter (effective diameter) of
the sphere having the same volume as the particle. So:

Sp _ nDj/Ps 6

V,  mD3/6 gDy (eq.24)
From equation 8:
Sp 6
=22 2
@ == Sy (eq.25)
Finally, equation 10 becomes:
6
a= 50y 1-¢) (eq.26)

For a sphere, ¢pg = 1,0, for a cylinder whose diameter = length ¢ is fixed at 0.874 and for a
cube ¢ is 0.806. For granular materials, it is difficult to measure the actual volume and
surface area in order to obtain the equivalent diameter. Therefore, D, is generally considered
to be the nominal size determined from visual analysis. The surface is determined by
adsorption measurements or measurements of the pressure drop in a particle bed. Finally,
equation 24 is used to calculate ¢s. Typical values for many crushed materials are between



0.6 and 0.7. For the convenience of the cylinder and cube, the nominal diameter is sometimes
used (instead of the equivalent diameter) which then gives a form factor of 1.0.

2.4. Flow rate in fluidized beds
2.4.1. Minimum fluidization velocity and porosity.

When a fluid flows upward through a particle packed bed, the particles remain stationary at
low velocity. With increasing fluid velocity, the pressure drop increases according to the
Ergiin relation (eq. 22 or 23). At some point, the force of pressure loss multiplied by the cross-
sectional area is equal to the force of gravity on the mass of the particles. Then the particles
begin to move, and this is the beginning of fluidization or the minimal fluidization point. The
fluid velocity at which fluidization starts is the minimum fluidization velocity, vy, in m/s
based on the cross-section of the empty column (superficial velocity).

The porosity of the bed at the time true fluidization occurs is the minimum fluidization
porosity and is &,y The bed develops this degree of porosity before particle movement occurs.
This minimum void amount can be determined experimentally by subjecting the bed to a fluid
flow and measuring the bed height at minimal fluidization L,y [m] and comparing this value
to the height of the bed when no liquid is flowing (where the porosity or void fraction is known
or can be measured easily).

As previously stated, the pressure drop increases as the fluid velocity increases until the
minimum fluidization begins. If the velocity increases further, the pressure drop decreases
very slightly and then remains practically unchanged as the bed continues to develop height
or as the porosity increases with velocity. The bed will finally look like a boiling liquid. When
the bed expands with increasing fluid velocity, it should always have a horizontal upper
surface. Finally, when the velocity is too fast, particles can be drawn into the flow and the bed
can completely disintegrate.

The relationship between the bed height L and porosity ¢ for a bed with a uniform cross-
section A4 is defined as follows: as the volume (1 — €)LA4 is equal to the total volume of solids
if they existed as a single object:

LlA(l - 81) - L2A(1 - 82) (eq.27)
Ly _ (1-¢2)
L, = (1oen (eq.28)

where L is the height of the bed with porosity € and L is the height with porosity &;.

2.4.2. Pressure drop and minimum fluidization velocity.
As a first approximation, the pressure drop at the start of fluidization can be determined as
follows. The force obtained from the pressure drop multiplied by the cross-sectional area shall
be equal to the gravitational force exerted by the mass of the particles minus the buoyancy of
the displaced liquid.

ApA = LinpA(1-&mp) (0= p) g (eq. 29)



So:

A

o= (L =emp) (pp=p)g (eq. 30)
Often, we have an irregular shape of particles in the bed and it is more convenient to use
particle size and shape factor in the equations. We will first replace the mean effective
diameter D, by the term ¢psDp where Dp now represents the particle size of a sphere having
the same volume as the particle and ¢ the shape factor. Finally, equation 22 for the pressure
drop in a packed bed becomes:

2
Ap 150uv’ (1-¢) 1.75p(v') 1-¢

= + (eq. 31)

L ®ipZ &3 ®gDp €3

where L; = the bed height [m].
Equation 31 can now be used for extrapolation of packed beds to calculate the minimum fluid
velocity vy, » at which fluidization begins by substituting vy, ¢ for v, ems for & and L for L,

and combining the result of equation 30 to give:

2
201
175D3(vjny) p? | 150(1=emp)Dpvprp  DRp(pp=p)g _

0 .32
Psen, pH? pZed cu u? (eq. 32)

By defining the Reynolds number as:

D UTIn p
Ngems = —1= p : (eq. 33)
Equation 33 becomes:
1-75(NRe,mf)2 150(1—&ms)(NRemf) _ Dgﬂ(pp—p)g _

P53, Y e (eq. 34)

When Nre, ms < 20 (small particles), the first term of equation 34 can be neglected and when
Nre, mf > 1000 (large particles), the second term can be neglected.
If the terms emr and/or @s are not known, Wen and Yu have found for a variety of systems:

=11 (eq. 35)

¢ 83 ~ 1 1-&my
STmf T 1 b3en s

Substituting in equation 34, we get another empirical equation to be used only when absolutely
necessary:

3 _ 1/2
Neems = |33.7)2 +0.0408 22200 _ 337 (eq. 36)

This equation is valid for a large range of Reynolds numbers from 0.001 to 4000 with an
average deviation of 25%.

2.4.3. Expansion of fluidized beds.



Dpv'p

In the case of small particles and where Ngg s = < 20, we can estimate the variation

of the porosity or L the bed height as follows. We assume that equation 34 applies over the
entire range of fluid velocities with the first term neglected. Next, the solution for v' is:
3

o DBlpp=p)a®s & _ o &
v= 150u 1-¢ Ky 1-¢ (eq. 37)

We note that all terms except € are constant for the particular system and v' depends on €. This
equation can be used with liquids to estimate porosities of the order of € <0.80. However, due
to agglutination and other factors, errors can occur when using a gas.

3. Experimental part

3.1 Objectives

Estimate the particle diameter of an unknown sample in a bed based on pressure loss.
Estimate the size distribution of particles in a mixed sample.

Measure the minimum fluidization flow rate.

Estimate particle density based on these observations.

Design a large-scale column according to the needs of the company.

3.2 Experimental set-up
Given the importance of your task, a pilot plant has been set up to enable you to calculate the
pump capacity according to the following diagram:
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Five particle samples are available for this experiment:



No.4 - D, = unknown

No.5-Dp=2mm

No.6 - D, =3 mm

No.7 - Dp =4 mm

No.8 — Mix of particles with two different diameters

3.3 Experimental procedure

Water fluidized bed

Before starting the system, measure the porosity of the particles used in the fluidized bed with
water. Use the volumetric cylinder with the particles, water, and the balance (to measure the
mass) in a way that allows you to calculate the porosity of the bed. Is there any other way to

measure the void fraction?

1y
2)

3)

4)

5)

6)

Turn on the device, start the software, and name your file.

Using the samples with a known particle diameter (three samples indicated by the
instructor) check the validity of Ergiin's equation (eq.22) by comparing the variation
of pressure losses as a function of water flow: (Show on a graph in your report).

For samples of unknown particle size: Record the bed height without flow, start the
pump (AB-1) and by increasing the water flow in the bed observe the variation of the
pressure loss as a function of the flow rate. At what flow rate do you observe the
fluidization?

Same as 3) but for a sample given by the instructor containing various proportions of
particles with two different diameters.

By plotting the pressure drop (Ap) as a function of v' calculate the particle diameter for
unknown samples. What assumption is made using this specific equation? Find the
minimum fluidization velocity and find the density of the particles.

Qualitatively investigate the fluidization of the particle bed with air as indicated by the
instructor (no data acquisition required).

Report

1y

2)

Graphically represent Ap as a function of v' and report the properties of the particles
found. For particles of known diameter, is the pressure drop, Ap, predicted by equation
22 consistent with the experimental data? What could be the cause(s) of eventual
deviations? Compare these on the same graph. What is the average size of the particles
in the mixed sample?

Knowing the density of the particles used and a bed particle mass of 200 kg:
e (Calculate the volume of the bed and column (20% larger of the bed) according
to the figure below.
e (alculate the minimum fluidization velocity using the minimum fluidization
porosity (emf) calculated in the experimental setup and knowing that the



3)

4)

5)

6)

minimum fluidization bed height (L) is related to the change recorded in the
experiment. The shape factor is fixed at 1.

¢ Calculate the pressure drop in the bed (Ap)
e (alculate the water flow rate and size the pump required (kW).

0.2m
—
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How do you think the pressure drop will change when larger particles are used in your
water fluidized bed? What is the effect on pump power?

The company also wants you to evaluate the consequences of changing the shapes of
the particles. Can you postulate what would be the effect(s) of using cubic particles?
What about if we use cylindrical particles with equivalent length and diameter? Assume

that the cubic and cylindrical particles have the same volume and porosity than the
spherical particles.

Discuss the pros and cons of using large particles in the bed? What about small
particles?

At the coffee machine, one of your colleagues suggest that you could flow water from

the top of the column to reduce the power required by the pump to fluidize the particles.
What do you think about this idea?



