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1. General objective

A Swiss company in the field of functionalized silica powder has hired you to determine the 
power of the pump that will bring water at 25°C into a fluidized bed of silica particles 
(spherical beads, 200 kg). In the bed, the beads undergo surface functionalization and must be 
suspended, or fluidized, during processing to ensure total surface coverage. If functionalization 
is not effective, surface impurities could compromise the polarity and separating power of the 
product when used for chromatographic purposes. The company provided you with particle 
samples but did not provide information on the characteristics of the particles. First you need 
to characterize the particles, and then you need to characterize their fluidization properties to 
be able to determine the size of the pump needed. 

2. Theoretical basis.
2.1. Definition of the drag coefficient around submerged objects
2.1.1. Introduction and types of drag.

The flow of a fluid around a submerged body occurs in many chemical engineering and other 
process applications. This takes place, for example, around particles in suspension, through a 
drying or filtering membrane, through heat exchangers, etc. It is useful to be able to predict 
friction losses and/or the force on immersed objects in these various applications. 

Figure 1: Flow of fluid around different submerged bodies 

In the Figure 1 above (part a) the fluid flow is parallel to the smooth surface of the flat, solid 
plate and the force F (in Newton) on a surface element dA [m2] of the plate is the shear stress 
τw multiplied by dA, i.e. τw dA. The total force is the sum of the integrals of these quantities 
evaluated over the entire surface of the plate. Here the transfer of moment to the surface 
produces a tangential stress or surface slip. 



 
In many cases, however, the submerged body is a solid that has different angles to the direction 
of fluid flow. As shown in Figure 1b the velocity v0 is uniform as the fluid approaches the 
suspended body in a large tube. The lines, called stream lines, represent the path of fluid 
elements around the suspended body. The thin boundary layer adjacent to the solid surface is 
represented by a dashed line and at the edge of this layer the velocity is substantially the same 
as the velocity of the adjacent fluid. At the front center of the body, at a place called the 
stagnation point, the velocity of the fluid is zero. The growth of the boundary layer starts from 
this point and will continue over the entire surface of the object until it separates. Due to the 
velocity gradient in the boundary layer a tangential stress is created. This is called friction 
drag. Outside the boundary layer the direction of the fluid changes direction to pass around 
the solid, it will be accelerated in front of the solid and slowed down afterwards. Due to these 
effects, additional force is exerted by the fluid on the body. This phenomenon, called pressure 
drag (or form drag), is in addition to the friction drag in the boundary layer. 
 
As shown in Figure 1b, the boundary layer detachment occurs and a wake covering the entire 
back of the object occurs when large vortices are present, contributing to pressure drag. The 
separation point depends on the shape of the particle, the Reynolds number, and so on. 
 
Pressure drag can be minimized by streamlining the body (Figure 1c) to shift the layer 
detachment to the back of the body, which greatly reduces the size of the wake. 

 
2.1.2. Coefficient of drag. 

 
From the previous discussion, it is evident that the geometry of the submerged solid is a major 
factor in determining the amount of total drag force exerted on the body. Correlations based 
on geometry and flow characteristics for solid objects suspended or retained in a flow 
(submerged objects) are similar in concept to the correlation between friction factor and 
Reynolds number given for flows in pipes. Through pipes, the coefficient of friction is defined 
as the ratio between the tensile force per unit area (shear stress) and the product of velocity 
and density as given in equation 1: 
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where: 
f = Fanning friction factor 
ΔpD = pressure loss due to drag 
πR2 = cross-sectional area 
2πRΔL = wetted surface 

 
Similarly, for flow around submerged objects, the drag coefficient CD is defined as the ratio 
of the total drag force per unit area and 𝜌𝑣!"/2 :	 
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where: 
FD = total force of drag [N] 
Ap = area obtained by projecting the body on a plane perpendicular to the flow lines 
[m2] 
CD = coefficient of drag [dimensionless] 
v0 = fluid approach speed [m/s] 
ρ = density of the fluid [kg/m3] 

 
By solving equation 2 for the total drag force, we get:  
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The Reynolds number for a given solid immersed in a flowing liquid is: 
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where 𝐺! = 𝑣!𝜌 

2.2. Flow around a sphere, a long cylinder, or a disc 

There is a relationship between CD and NRe for each case of immersed object, determined 
experimentally. These are shown in Figure 2 for spheres, long cylinders, and discs. In these 
cases, the disc face and the cylinder axis are always considered perpendicular to the direction 
of flow. However, in the laminar region, i.e., for low Reynolds numbers (less than about 1.0), 
the drag force determined experimentally is the same as the Stokes' Law equation as follows: 
                                                                    𝐹# = 3𝜋𝜇𝐷*𝑣!                                              (eq .5) 
By combining equations 3 and 5 and solving for CD, the Stokes' law drag coefficient is: 
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The variation of CD with respect to NRe is quite complicated due to the interaction of factors 
that control layer strength and pressure drag. For a sphere, when the Reynolds number is 
increased beyond the range of Stokes' law, detachment of the boundary layer occurs. If NRe is 
further increased, the separation point shifts and CD decreases. In the region of NRe of about 1 
× 103 to 2 × 105, the drag coefficient is approximately constant at CD = 0,44 for a sphere. From 
NRe = 3 × 105 there is a sudden drop of CD which is the result of the complete turbulence in 
the boundary layer and the displacement of the separation point downstream Above a NRe of 
about 5 x 105 drag coefficients are again approximately constant: 0.13 for a sphere, 0.33 for a 
cylinder and 1.12 for a disk. 

 



 

Figure 2: Correlations between the Reynolds number and the drag coefficient for spheres, disks, and cylinders 

The flow of fluids in cylinders or tubes takes place in heat exchangers or other process 
applications. The tube banks can be arranged in a number of different geometries. Due to the 
many possible configurations, it is not possible to have a single correlation for pressure drops 
and friction factors. 

2.3.Flow through a fixed (stationary) bed 
2.3.1. Introduction. 

A system of considerable importance in the chemical industry and other areas of process 
engineering is the packed bed or packed column which is used in fixed bed catalytic reactors, 
solute adsorption or absorption, filter beds, etc. Bed filler particles can be spheres, irregular 
particles, cylinders, or various types of commercial packing. In the discussion that follows, it 
is assumed that the filling is uniform everywhere in the column or bed. The ratio of column 
diameter to packing diameter should be a minimum of 8:1 to 10:1 to be able to neglect the 
wall effects. In the theoretical approach used, the packed column is considered to be a bundle 
of twisted tubes with a different cross-section. The theory developed for simple straight tubes 
is used to develop the results for the bundle of twisted tubes. 

2.3.2. Laminar flow in packed beds. 

Some definitions are needed for the flow in a particle bed such as the porosity ε in a packed 
bed: 

 

                                           𝜀 = empty	volume	in	the	bed
total	volume	of	bed	(void	plus	solid)

                                      (eq. 7) 

 
The specific surface area of a particle av in [m–1]: 
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where Sp is the surface area of the particle in [m2] and Vp is the volume of the particle in [m3]. 
For a spherical particle: 
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where Dp is the particle diameter in [m]. Since (1 - ε) is the volume fraction of the particles in 
the bed, we can write: 
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where a is the ratio of the total area in the bed to the total volume of the bed (void volume as 
well as the volume of particles) in [m-1]. 
The mean interstitial velocity of the fluid in the bed is v [m/s]. It is related to the superficial 
velocity, v', based on the cross-section of the empty container by: 

 
                                                                      v'= εv                                                  (eq.11) 

 
The hydraulic radius rH is defined as the ratio between the cross-sectional area of the channel 
(the path the fluid takes through the bed) and the wetted perimeter of the flow channel. Thus, 
in the case of turbulent flow only: 
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By combining equations 10 and 12: 
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Since the equivalent diameter of a channel is D = 4rH, the Reynolds number for a packed bed 
is as follows using equations 11 and 13: 
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For packed (stationary) beds, Ergün defined the Reynolds number as above but without the 
term 4/6. 
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where G' = v' ρ. 
For laminar flow, the Hagen-Poiseuille equation defines the pressure drop: 
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where:  
p1 = pressure at point 1 [N/m2] 
p2 = pressure at point 2 [N/m2] 
v = average fluid velocity in the tube [m/s] 
D = internal diameter [m] 
(L2–L1) = Ll = length of the bed [m] 
(p1–p2) = Δpf = pressure drop due to friction 

Combining this equation with the 13 for rH and eq. 11, we find: 
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The actual distance travelled by the liquid in the bed is greater than 𝐿V due to the tortuous 
trajectory of the liquid through the bed and the use of the hydraulic radius foresees a too big 
velocity v. Experimental data show that the constant should be 150 instead of 72, giving the 
Blake-Kozeny equation for laminar flow in a packed bed, with a void fraction less than 0.5, 
an effective particle diameter Dp and when NRe,p < 10 
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2.3.3.  Turbulent flow in packed beds. 

For a turbulent flow, we use the same procedure, starting with the equation below: 
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And substituting in equations 11 and 13 we can get: 
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For a very turbulent flow the coefficient of friction should approach a constant value (as it 
does for the classic submerged objects shown in Figure 2). In addition, it is assumed that all 
packed beds should have the same relative roughness (in the limiting case). Experimental data 
indicate that 3f = 1.75. Therefore, the final equation for a turbulent flow for NRe,p > 1000, 
which is called the Burke-Plummer equation, becomes: 
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Adding up equation 18 for laminar flow and equation 21 for turbulent flow, Ergün proposed 
the following general equation for low, intermediate, and high Reynolds numbers that was 
experimentally tested: 
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Rewriting equation 22 in terms of dimensionless groups gives: 
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This is called the Ergün equation and can be used for liquids or for gases using the density ρ 
of the gas at the arithmetic mean of the inlet and outlet pressure. The velocity v' changes in 
the bed for a compressible fluid, but G' is constant. For high values of NRe,p equations 22 and 
23 are reduced to equation 21 and are reduced to equation 18 for low values. 

2.3.4. Form factors. 

Many particles in packed beds are often irregularly shaped. The equivalent particle diameter 
is defined as the diameter of a sphere having the same volume as the particle. The sphericity 
factor (or form factor) 𝜙E of a particle is the ratio of the surface of this sphere having the same 
volume as the particle to the effective surface of the particle. For a sphere, the surface 𝑆* =
𝜋𝐷*" and the volume is 𝑉* = 𝜋𝐷*R/6. Therefore, for each particle, 𝜙E = 𝜋𝐷*"/𝑆*, where Sp is 
the effective surface area of the particle and Dp is the particle diameter (effective diameter) of 
the sphere having the same volume as the particle. So: 
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From equation 8: 
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Finally, equation 10 becomes: 
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For a sphere, 𝜙E = 1,0, for a cylinder whose diameter = length 𝜙E is fixed at 0.874 and for a 
cube 𝜙E is 0.806. For granular materials, it is difficult to measure the actual volume and 
surface area in order to obtain the equivalent diameter. Therefore, Dp is generally considered 
to be the nominal size determined from visual analysis. The surface is determined by 
adsorption measurements or measurements of the pressure drop in a particle bed. Finally, 
equation 24 is used to calculate 𝜙E. Typical values for many crushed materials are between 



0.6 and 0.7. For the convenience of the cylinder and cube, the nominal diameter is sometimes 
used (instead of the equivalent diameter) which then gives a form factor of 1.0. 

2.4. Flow rate in fluidized beds 
2.4.1. Minimum fluidization velocity and porosity.  

When a fluid flows upward through a particle packed bed, the particles remain stationary at 
low velocity. With increasing fluid velocity, the pressure drop increases according to the 
Ergün relation (eq. 22 or 23). At some point, the force of pressure loss multiplied by the cross- 
sectional area is equal to the force of gravity on the mass of the particles. Then the particles 
begin to move, and this is the beginning of fluidization or the minimal fluidization point. The 
fluid velocity at which fluidization starts is the minimum fluidization velocity, 𝑣^Q_  in m/s 
based on the cross-section of the empty column (superficial velocity). 
The porosity of the bed at the time true fluidization occurs is the minimum fluidization 
porosity and is εmf. The bed develops this degree of porosity before particle movement occurs. 
This minimum void amount can be determined experimentally by subjecting the bed to a fluid 
flow and measuring the bed height at minimal fluidization Lmf [m] and comparing this value 
to the height of the bed when no liquid is flowing (where the porosity or void fraction is known 
or can be measured easily). 
As previously stated, the pressure drop increases as the fluid velocity increases until the 
minimum fluidization begins. If the velocity increases further, the pressure drop decreases 
very slightly and then remains practically unchanged as the bed continues to develop height 
or as the porosity increases with velocity. The bed will finally look like a boiling liquid. When 
the bed expands with increasing fluid velocity, it should always have a horizontal upper 
surface. Finally, when the velocity is too fast, particles can be drawn into the flow and the bed 
can completely disintegrate. 
The relationship between the bed height L and porosity ε for a bed with a uniform cross-
section A is defined as follows: as the volume (1 – ε)LA is equal to the total volume of solids 
if they existed as a single object: 
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where L1 is the height of the bed with porosity ε1 and L2 is the height with porosity ε2. 

2.4.2. Pressure drop and minimum fluidization velocity.  
As a first approximation, the pressure drop at the start of fluidization can be determined as 
follows. The force obtained from the pressure drop multiplied by the cross-sectional area shall 
be equal to the gravitational force exerted by the mass of the particles minus the buoyancy of 
the displaced liquid. 

∆𝑝𝐴 = 𝐿^Q𝐴(1– 𝜀^Q)I𝜌*– 𝜌J𝑔                                         (eq. 29) 
 



So: 
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S50

= (1 − 𝜀^Q)	I𝜌*– 𝜌J𝑔                                            (eq. 30) 

 
Often, we have an irregular shape of particles in the bed and it is more convenient to use 
particle size and shape factor in the equations. We will first replace the mean effective 
diameter Dp by the term 𝜙E𝐷` where DP now represents the particle size of a sphere having 
the same volume as the particle and 𝜙E the shape factor. Finally, equation 22 for the pressure 
drop in a packed bed becomes: 
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where 𝐿V = the bed height [m]. 

Equation 31 can now be used for extrapolation of packed beds to calculate the minimum fluid 
velocity 𝑣^Q_  at which fluidization begins by substituting 𝑣^Q_  for 𝑣’, εmf for ε, and Lmf for Ll 
and combining the result of equation 30 to give: 
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By defining the Reynolds number as:  
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Equation 33 becomes: 
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When NRe, mf  < 20 (small particles), the first term of equation 34 can be neglected and when 
NRe, mf > 1000 (large particles), the second term can be neglected. 
If the terms εmf and/or φS are not known, Wen and Yu have found for a variety of systems: 
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Substituting in equation 34, we get another empirical equation to be used only when absolutely 
necessary: 
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This equation is valid for a large range of Reynolds numbers from 0.001 to 4000 with an 
average deviation of 25%. 

2.4.3. Expansion of fluidized beds. 



In the case of small particles and where 𝑁KL,^Q =
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-

< 20, we can estimate the variation 

of the porosity or L the bed height as follows. We assume that equation 34 applies over the 
entire range of fluid velocities with the first term neglected. Next, the solution for v' is: 
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We note that all terms except ε are constant for the particular system and v' depends on ε. This 
equation can be used with liquids to estimate porosities of the order of ε < 0.80. However, due 
to agglutination and other factors, errors can occur when using a gas. 

 

3. Experimental part 

3.1 Objectives 
 
Estimate the particle diameter of an unknown sample in a bed based on pressure loss.  
 
Estimate the size distribution of particles in a mixed sample. 
 
Measure the minimum fluidization flow rate. 
 
Estimate particle density based on these observations. 
 
Design a large-scale column according to the needs of the company. 
 
3.2 Experimental set-up 
Given the importance of your task, a pilot plant has been set up to enable you to calculate the 
pump capacity according to the following diagram:  

 
The columns are 550 mm high with an internal diameter of 44 mm. 
 
Five particle samples are available for this experiment: 



No.4 - Dp = unknown 
No.5 - Dp = 2 mm 
No.6 - Dp = 3 mm 
No.7 - Dp = 4 mm 
No.8 – Mix of particles with two different diameters 

 
3.3 Experimental procedure 
 
Water fluidized bed  

Before starting the system, measure the porosity of the particles used in the fluidized bed with 
water. Use the volumetric cylinder with the particles, water, and the balance (to measure the 
mass) in a way that allows you to calculate the porosity of the bed. Is there any other way to 
measure the void fraction? 

1) Turn on the device, start the software, and name your file.  
2) Using the samples with a known particle diameter (three samples indicated by the 

instructor) check the validity of Ergün's equation (eq.22) by comparing the variation 
of pressure losses as a function of water flow: (Show on a graph in your report). 

3) For samples of unknown particle size: Record the bed height without flow, start the 
pump (AB-1) and by increasing the water flow in the bed observe the variation of the 
pressure loss as a function of the flow rate. At what flow rate do you observe the 
fluidization? 

4) Same as 3) but for a sample given by the instructor containing various proportions of 
particles with two different diameters.  

5) By plotting the pressure drop (Δp) as a function of v' calculate the particle diameter for 
unknown samples. What assumption is made using this specific equation? Find the 
minimum fluidization velocity and find the density of the particles. 

6) Qualitatively investigate the fluidization of the particle bed with air as indicated by the 
instructor (no data acquisition required). 

 
Report 

1) Graphically represent Δp as a function of v' and report the properties of the particles 
found. For particles of known diameter, is the pressure drop, Δp, predicted by equation 
22 consistent with the experimental data? What could be the cause(s) of eventual 
deviations? Compare these on the same graph. What is the average size of the particles 
in the mixed sample?  
 

2) Knowing the density of the particles used and a bed particle mass of 200 kg:  
• Calculate the volume of the bed and column (20% larger of the bed) according 

to the figure below. 
• Calculate the minimum fluidization velocity using the minimum fluidization 

porosity (εmf) calculated in the experimental setup and knowing that the 



minimum fluidization bed height (Lmf) is related to the change recorded in the 
experiment. The shape factor is fixed at 1. 

• Calculate the pressure drop in the bed (Δp) 
• Calculate the water flow rate and size the pump required (kW). 

                                   
 

3) How do you think the pressure drop will change when larger particles are used in your 
water fluidized bed? What is the effect on pump power? 
 

4) The company also wants you to evaluate the consequences of changing the shapes of 
the particles. Can you postulate what would be the effect(s) of using cubic particles? 
What about if we use cylindrical particles with equivalent length and diameter? Assume 
that the cubic and cylindrical particles have the same volume and porosity than the 
spherical particles. 
 

5) Discuss the pros and cons of using large particles in the bed? What about small 
particles?  
 

6) At the coffee machine, one of your colleagues suggest that you could flow water from 
the top of the column to reduce the power required by the pump to fluidize the particles. 
What do you think about this idea? 
 
 

 


